mirror of
https://github.com/rzmk/ladderz.git
synced 2025-12-19 06:59:25 +00:00
feat(pre-algebra): add is_factor and is_multiple
This commit is contained in:
parent
a380407f21
commit
186f76d4f7
3 changed files with 205 additions and 19 deletions
|
|
@ -1,4 +1,4 @@
|
|||
//! Implementations of mathematical and technical concepts in Rust.
|
||||
|
||||
/// Various pre-algebra implementations including multiples (planned), factor pairs, etc.
|
||||
/// Various pre-algebra implementations including factor pairs, factors, multiples, and more.
|
||||
pub mod pre_algebra;
|
||||
|
|
|
|||
|
|
@ -1,14 +1,14 @@
|
|||
use std::collections::HashSet;
|
||||
|
||||
/// Finds all factor pairs for a given positive integer.
|
||||
///
|
||||
/// Finds all factor pairs for a positive integer `n`.
|
||||
///
|
||||
/// # Challenge
|
||||
///
|
||||
/// Write a program that finds all the factor pairs for a given number `n`.
|
||||
///
|
||||
///
|
||||
/// Write a program that finds all the factor pairs for a number `n`.
|
||||
///
|
||||
/// # Description
|
||||
///
|
||||
/// Generates a `HashSet` of factor pairs for a given positive integer `n`.
|
||||
///
|
||||
/// Generates a `HashSet` of factor pairs for a positive integer `n`.
|
||||
///
|
||||
/// This function calculates and returns a `HashSet` containing all unique factor pairs
|
||||
/// of the input positive integer `n`. A factor pair is a pair of positive integers
|
||||
|
|
@ -57,15 +57,15 @@ pub fn get_factor_pairs(n: u32) -> HashSet<(u32, u32)> {
|
|||
factor_pairs
|
||||
}
|
||||
|
||||
/// Finds all factors of a given positive integer.
|
||||
///
|
||||
/// Finds all factors of a positive integer `n`.
|
||||
///
|
||||
/// # Challenge
|
||||
///
|
||||
/// Write a program that finds all the factors of a given number. Assume that `n` is a positive integer greater than or equal to 1.
|
||||
///
|
||||
/// Write a program that finds all the factors of a number. Assume that `n` is a positive integer greater than or equal to 1.
|
||||
///
|
||||
/// # Description
|
||||
///
|
||||
/// Generates a `HashSet` of factors for a given positive integer `n`.
|
||||
///
|
||||
/// Generates a `HashSet` of factors for a positive integer `n`.
|
||||
///
|
||||
/// This function calculates and returns a `HashSet` containing all unique factors
|
||||
/// of the input positive integer `n`. A factor of `n` is a positive integer `a` where
|
||||
|
|
@ -100,7 +100,7 @@ pub fn get_factor_pairs(n: u32) -> HashSet<(u32, u32)> {
|
|||
pub fn get_factors(n: u32) -> HashSet<u32> {
|
||||
let mut factors: HashSet<u32> = HashSet::new();
|
||||
|
||||
for num in 1..n+1 {
|
||||
for num in 1..n + 1 {
|
||||
if n % num == 0 {
|
||||
factors.insert(num);
|
||||
}
|
||||
|
|
@ -108,6 +108,81 @@ pub fn get_factors(n: u32) -> HashSet<u32> {
|
|||
factors
|
||||
}
|
||||
|
||||
/// Checks if a positive integer `x` is a factor of another positive integer `y`.
|
||||
///
|
||||
/// # Challenge
|
||||
///
|
||||
/// Write a program that determines whether one positive integer is a factor of another.
|
||||
///
|
||||
/// # Description
|
||||
///
|
||||
/// Checks if a positive integer `x` is a factor of another positive integer `y`.
|
||||
///
|
||||
/// A factor of `y` is a positive integer `x` where `y` is evenly divisible by `x` (i.e., `y % x == 0`).
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `x` - The positive integer to determine whether it is a factor of `y` or not.
|
||||
/// * `y` - The positive integer for which the factor check of `x` is performed.
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// `true` if `x` is a factor of `y`, `false` otherwise.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```rust
|
||||
/// use ladderz::pre_algebra::unit1::is_factor;
|
||||
///
|
||||
/// fn main() {
|
||||
/// assert!(is_factor(2, 16)); // 2 is a factor of 16
|
||||
/// assert!(!is_factor(3, 16)); // 3 is not a factor of 16
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// # Note
|
||||
///
|
||||
/// This function determines if `x` is a factor of `y` by checking if `y` is evenly divisible by `x`
|
||||
/// (i.e., `y % x == 0`).
|
||||
pub fn is_factor(x: u32, y: u32) -> bool {
|
||||
y % x == 0
|
||||
}
|
||||
|
||||
/// Checks if a positive integer `x` is a multiple of another positive integer `y`.
|
||||
///
|
||||
/// # Challenge
|
||||
///
|
||||
/// Write a program that determines whether one positive integer is a multiple of another.
|
||||
///
|
||||
/// # Description
|
||||
///
|
||||
/// Checks if a positive integer `x` is a multiple of another positive integer `y`.
|
||||
///
|
||||
/// A multiple of `y` is a positive integer `x` where `x` is evenly divisible by `y` (i.e., `x % y == 0`).
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `x` - The positive integer to determine whether it is a multiple of `y` or not.
|
||||
/// * `y` - The positive integer for which the multiple check of `x` is performed.
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// `true` if `x` is a multiple of `y`, `false` otherwise.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```rust
|
||||
/// use ladderz::pre_algebra::unit1::is_multiple;
|
||||
///
|
||||
/// fn main() {
|
||||
/// assert!(is_multiple(16, 2)); // 16 is a multiple of 2
|
||||
/// assert!(!is_multiple(16, 3)); // 16 is not a multiple of 3
|
||||
/// }
|
||||
/// ```
|
||||
pub fn is_multiple(x: u32, y: u32) -> bool {
|
||||
x % y == 0
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
|
@ -133,4 +208,26 @@ mod tests {
|
|||
let expected_2: HashSet<u32> = [1, 2, 4, 8, 16].into();
|
||||
assert_eq!(result_2, expected_2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_is_factor() {
|
||||
let result: bool = true;
|
||||
let expected: bool = is_factor(2, 10);
|
||||
assert_eq!(result, expected);
|
||||
|
||||
let result_2: bool = false;
|
||||
let expected_2: bool = is_factor(3, 10);
|
||||
assert_eq!(result_2, expected_2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_is_multiple() {
|
||||
let result: bool = true;
|
||||
let expected: bool = is_multiple(10, 2);
|
||||
assert_eq!(result, expected);
|
||||
|
||||
let result_2: bool = false;
|
||||
let expected_2: bool = is_multiple(11, 2);
|
||||
assert_eq!(result_2, expected_2);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -24,7 +24,7 @@
|
|||
"\n",
|
||||
"> [Link to lesson](https://www.khanacademy.org/math/pre-algebra/pre-algebra-factors-multiples/pre-algebra-factors-mult/v/understanding-factor-pairs).\n",
|
||||
"\n",
|
||||
"**Write a program that finds all the factor pairs for a given number $n$.**\n",
|
||||
"**Write a program that finds all the factor pairs for a number $n$.**\n",
|
||||
"\n",
|
||||
"- Do not repeat any pairs (e.g., consider `(2, 8)` and `(8, 2)` as the same).\n",
|
||||
"- Assume that $n$ is a positive integer greater than or equal to 1 ($n \\in \\mathbb{Z}^+$).\n",
|
||||
|
|
@ -38,7 +38,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
|
@ -72,7 +72,9 @@
|
|||
"\n",
|
||||
"> [Link to lesson](https://www.khanacademy.org/math/pre-algebra/pre-algebra-factors-multiples/pre-algebra-factors-mult/v/finding-factors-of-a-number).\n",
|
||||
"\n",
|
||||
"**Write a program that finds all the factors of a given number $n$.** Assume that $n$ is a positive integer greater than or equal to 1 ($n \\in \\mathbb{Z}^+$).\n",
|
||||
"**Write a program that finds all the factors of a number $n$.**\n",
|
||||
"\n",
|
||||
"- Assume that $n$ is a positive integer greater than or equal to 1 ($n \\in \\mathbb{Z}^+$).\n",
|
||||
"\n",
|
||||
"For example for $n = 16$, the output of `get_factors(16)` may be:\n",
|
||||
"\n",
|
||||
|
|
@ -83,7 +85,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
|
@ -101,6 +103,93 @@
|
|||
"assert get_factors(16) == {1, 2, 4, 8, 16}\n",
|
||||
"assert get_factors(120) == {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Finding factors and multiples\n",
|
||||
"\n",
|
||||
"> [Link to lesson](https://www.khanacademy.org/math/pre-algebra/pre-algebra-factors-multiples/pre-algebra-factors-mult/v/finding-factors-and-multiples)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Write a program that checks if a number $x$ is a factor of $y$.**\n",
|
||||
"\n",
|
||||
"- Assume that $x$ and $y$ are positive integers greater than or equal to 1 ($x, y \\in \\mathbb{Z}^+$).\n",
|
||||
"\n",
|
||||
"For example, for $x = 2$ and $y = 10$, the output of `is_factor(2, 10)` may be:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"True\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def is_factor(x: int, y: int) -> bool:\n",
|
||||
" return y % x == 0\n",
|
||||
"\n",
|
||||
"assert is_factor(2, 10) == True\n",
|
||||
"assert is_factor(3, 10) == False"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Write a program that checks if a number $x$ is a multiple of $y$.**\n",
|
||||
"\n",
|
||||
"- Assume that $x$ and $y$ are positive integers greater than or equal to 1 ($x, y \\in \\mathbb{Z}^+$).\n",
|
||||
"\n",
|
||||
"For example, for $x = 20$ and $y = 3$, the output of `is_multiple(20, 3)` may be:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"True\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def is_multiple(x: int, y: int) -> bool:\n",
|
||||
" return x % y == 0\n",
|
||||
"\n",
|
||||
"assert is_multiple(10, 2) == True\n",
|
||||
"assert is_multiple(10, 3) == False"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Write a program that finds all multiples of a given number $n$ up to a given limit $l$.**\n",
|
||||
"\n",
|
||||
"- Assume that $n$ and $l$ are positive integers greater than or equal to 1 ($n, l \\in \\mathbb{Z}^+$).\n",
|
||||
"\n",
|
||||
"For example for $n = 3$ and $l = 20$, the output of `get_multiples(3, 20)` may be:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"{3, 6, 9, 12, 15, 18}\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue