ladderz/lz/src/prealgebra.rs

347 lines
8.8 KiB
Rust

use clap::Subcommand;
#[derive(Subcommand)]
#[command(arg_required_else_help(true))]
pub enum Prealgebra {
/// Finds all factor pairs for a positive integer.
///
/// ## Example
///
/// ### Input
///
/// ```bash
/// lz prealgebra factor-pairs 12
/// ```
///
/// ### Output
///
/// ```bash
/// The factor pairs of 12 are {(1, 12), (2, 6), (3, 4)}.
/// ```
///
/// ## Raw Output (use `-r` or `--raw`)
///
/// ```bash
/// {(1, 12), (2, 6), (3, 4)}
/// ```
FactorPairs {
/// The positive integer to find factor pairs for.
n: u32,
/// Whether or not to return the raw output.
#[arg(short = 'r', long)]
raw: bool,
},
/// Finds all factors for a positive integer.
///
/// ## Example
///
/// ### Input
///
/// ```bash
/// lz prealgebra factors 12
/// ```
///
/// ### Output
///
/// ```bash
/// The factors of 12 are {1, 2, 3, 4, 6, 12}.
/// ```
///
/// ## Raw Output (use `-r` or `--raw`)
///
/// ```bash
/// {1, 2, 3, 4, 6, 12}
/// ```
Factors {
/// The positive integer to find factors for.
n: u32,
/// Whether or not to return the raw output.
#[arg(short = 'r', long)]
raw: bool,
},
/// Finds all multiples of a positive integer in a given range.
///
/// ## Example
///
/// ### Input
///
/// ```bash
/// lz prealgebra multiples-in-range 3 10
/// ```
///
/// ### Output
///
/// ```bash
/// The multiples of 3 in the range [1, 10] are {3, 6, 9}.
/// ```
///
/// ## Raw Output (use `-r` or `--raw`)
///
/// ```bash
/// {3, 6, 9}
/// ```
MultiplesInRange {
/// The positive integer to find multiples for.
n: u32,
/// The upper bound of the range to find multiples in.
upper_bound: u32,
/// Whether or not to return the raw output.
#[arg(short = 'r', long)]
raw: bool,
},
/// Finds all primes in a given range.
///
/// ## Example
///
/// ### Input
///
/// ```bash
/// lz prealgebra primes-in-range 1 10
/// ```
///
/// ### Output
///
/// ```bash
/// The primes in the range [1, 10] are {2, 3, 7, 5}.
/// ```
///
/// ## Raw Output (use `-r` or `--raw`)
///
/// ```bash
/// {2, 3, 7, 5}
/// ```
PrimesInRange {
/// The lower bound of the range to find primes in.
lower_bound: u32,
/// The upper bound of the range to find primes in.
upper_bound: u32,
/// Whether or not to return the raw output.
#[arg(short = 'r', long)]
raw: bool,
},
/// Finds the prime factorization of a positive integer.
///
/// ## Example
///
/// ### Input
///
/// ```bash
/// lz prealgebra prime-factorization 12
/// ```
///
/// ### Output
///
/// ```bash
/// The prime factorization of 12 is {3: 1, 2: 2}.
/// ```
///
/// ## Raw Output (use `-r` or `--raw`)
///
/// ```bash
/// {3: 1, 2: 2}
/// ```
PrimeFactorization {
/// The positive integer to find the prime factorization of.
n: u32,
/// Whether or not to return the raw output.
#[arg(short = 'r', long)]
raw: bool,
},
/// Determines if a positive integer is composite.
///
/// ## Example
///
/// ### Input
///
/// ```bash
/// lz prealgebra is-composite 12
/// ```
///
/// ### Output
///
/// ```bash
/// 12 is composite.
/// ```
///
/// ## Raw Output (use `-r` or `--raw`)
///
/// ```bash
/// true
/// ```
IsComposite {
/// The positive integer to determine if it is composite.
n: u32,
/// Whether or not to return the raw output.
#[arg(short = 'r', long)]
raw: bool,
},
/// Determines if a positive integer is prime.
///
/// ## Example
///
/// ### Input
///
/// ```bash
/// lz prealgebra is-prime 12
/// ```
///
/// ### Output
///
/// ```bash
/// 12 is not prime.
/// ```
///
/// ## Raw Output (use `-r` or `--raw`)
///
/// ```bash
/// false
/// ```
IsPrime {
/// The positive integer to determine if it is prime.
n: u32,
/// Whether or not to return the raw output.
#[arg(short = 'r', long)]
raw: bool,
},
/// Determines if a positive integer is a factor of another positive integer.
///
/// ## Example
///
/// ### Input
///
/// ```bash
/// lz prealgebra is-factor 3 12
/// ```
///
/// ### Output
///
/// ```bash
/// 3 is a factor of 12.
/// ```
///
/// ## Raw Output (use `-r` or `--raw`)
///
/// ```bash
/// true
/// ```
IsFactor {
/// The positive integer to determine if it is a factor.
n: u32,
/// The positive integer to determine if it is a multiple.
m: u32,
/// Whether or not to return the raw output.
#[arg(short = 'r', long)]
raw: bool,
},
/// Determines if a positive integer is a multiple of another positive integer.
///
/// ## Example
///
/// ### Input
///
/// ```bash
/// lz prealgebra is-multiple 12 3
/// ```
///
/// ### Output
///
/// ```bash
/// 12 is a multiple of 3.
/// ```
///
/// ## Raw Output (use `-r` or `--raw`)
///
/// ```bash
/// true
/// ```
IsMultiple {
/// The positive integer to determine if it is a multiple.
n: u32,
/// The positive integer to determine if it is a factor.
m: u32,
/// Whether or not to return the raw output.
#[arg(short = 'r', long)]
raw: bool,
},
}
pub fn match_prealgebra(function: Option<Prealgebra>) {
use ladderz::prealgebra::*;
match function {
Some(Prealgebra::FactorPairs { n, raw }) => match raw {
true => println!("{:?}", get_factor_pairs(n)),
false => println!("The factor pairs of {} are {:?}.", n, get_factor_pairs(n)),
},
Some(Prealgebra::Factors { n, raw }) => match raw {
true => println!("{:?}", get_factors(n)),
false => println!("The factors of {} are {:?}.", n, get_factors(n)),
},
Some(Prealgebra::MultiplesInRange {
n,
upper_bound,
raw,
}) => match raw {
true => println!("{:?}", get_multiples_in_range(n, upper_bound)),
false => println!(
"The multiples of {} in the range [1, {}] are {:?}.",
n,
upper_bound,
get_multiples_in_range(n, upper_bound)
),
},
Some(Prealgebra::PrimesInRange {
lower_bound,
upper_bound,
raw,
}) => match raw {
true => println!("{:?}", get_primes_in_range(lower_bound, upper_bound)),
false => println!(
"The primes in the range [{}, {}] are {:?}.",
lower_bound,
upper_bound,
get_primes_in_range(lower_bound, upper_bound)
),
},
Some(Prealgebra::PrimeFactorization { n, raw }) => match raw {
true => println!("{:?}", get_prime_factorization(n)),
false => println!(
"The prime factorization of {} is {:?}.",
n,
get_prime_factorization(n)
),
},
Some(Prealgebra::IsComposite { n, raw }) => match raw {
true => println!("{:?}", is_composite(n)),
false => println!(
"{} is {}composite.",
n,
if is_composite(n) { "" } else { "not " }
),
},
Some(Prealgebra::IsPrime { n, raw }) => match raw {
true => println!("{:?}", is_prime(n)),
false => println!("{} is {}prime.", n, if is_prime(n) { "" } else { "not " }),
},
Some(Prealgebra::IsFactor { n, m, raw }) => match raw {
true => println!("{:?}", is_factor(n, m)),
false => println!(
"{} is {}a factor of {}.",
n,
if is_factor(n, m) { "" } else { "not " },
m
),
},
Some(Prealgebra::IsMultiple { n, m, raw }) => match raw {
true => println!("{:?}", is_multiple(n, m)),
false => println!(
"{} is {}a multiple of {}.",
n,
if is_multiple(n, m) { "" } else { "not " },
m
),
},
None => {
println!("Please provide a function to use.");
}
}
}