mirror of
https://github.com/rzmk/ladderz.git
synced 2025-12-19 06:59:25 +00:00
347 lines
8.8 KiB
Rust
347 lines
8.8 KiB
Rust
use clap::Subcommand;
|
|
|
|
#[derive(Subcommand)]
|
|
#[command(arg_required_else_help(true))]
|
|
pub enum Prealgebra {
|
|
/// Finds all factor pairs for a positive integer.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ### Input
|
|
///
|
|
/// ```bash
|
|
/// lz prealgebra factor-pairs 12
|
|
/// ```
|
|
///
|
|
/// ### Output
|
|
///
|
|
/// ```bash
|
|
/// The factor pairs of 12 are {(1, 12), (2, 6), (3, 4)}.
|
|
/// ```
|
|
///
|
|
/// ## Raw Output (use `-r` or `--raw`)
|
|
///
|
|
/// ```bash
|
|
/// {(1, 12), (2, 6), (3, 4)}
|
|
/// ```
|
|
FactorPairs {
|
|
/// The positive integer to find factor pairs for.
|
|
n: u32,
|
|
/// Whether or not to return the raw output.
|
|
#[arg(short = 'r', long)]
|
|
raw: bool,
|
|
},
|
|
/// Finds all factors for a positive integer.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ### Input
|
|
///
|
|
/// ```bash
|
|
/// lz prealgebra factors 12
|
|
/// ```
|
|
///
|
|
/// ### Output
|
|
///
|
|
/// ```bash
|
|
/// The factors of 12 are {1, 2, 3, 4, 6, 12}.
|
|
/// ```
|
|
///
|
|
/// ## Raw Output (use `-r` or `--raw`)
|
|
///
|
|
/// ```bash
|
|
/// {1, 2, 3, 4, 6, 12}
|
|
/// ```
|
|
Factors {
|
|
/// The positive integer to find factors for.
|
|
n: u32,
|
|
/// Whether or not to return the raw output.
|
|
#[arg(short = 'r', long)]
|
|
raw: bool,
|
|
},
|
|
/// Finds all multiples of a positive integer in a given range.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ### Input
|
|
///
|
|
/// ```bash
|
|
/// lz prealgebra multiples-in-range 3 10
|
|
/// ```
|
|
///
|
|
/// ### Output
|
|
///
|
|
/// ```bash
|
|
/// The multiples of 3 in the range [1, 10] are {3, 6, 9}.
|
|
/// ```
|
|
///
|
|
/// ## Raw Output (use `-r` or `--raw`)
|
|
///
|
|
/// ```bash
|
|
/// {3, 6, 9}
|
|
/// ```
|
|
MultiplesInRange {
|
|
/// The positive integer to find multiples for.
|
|
n: u32,
|
|
/// The upper bound of the range to find multiples in.
|
|
upper_bound: u32,
|
|
/// Whether or not to return the raw output.
|
|
#[arg(short = 'r', long)]
|
|
raw: bool,
|
|
},
|
|
/// Finds all primes in a given range.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ### Input
|
|
///
|
|
/// ```bash
|
|
/// lz prealgebra primes-in-range 1 10
|
|
/// ```
|
|
///
|
|
/// ### Output
|
|
///
|
|
/// ```bash
|
|
/// The primes in the range [1, 10] are {2, 3, 7, 5}.
|
|
/// ```
|
|
///
|
|
/// ## Raw Output (use `-r` or `--raw`)
|
|
///
|
|
/// ```bash
|
|
/// {2, 3, 7, 5}
|
|
/// ```
|
|
PrimesInRange {
|
|
/// The lower bound of the range to find primes in.
|
|
lower_bound: u32,
|
|
/// The upper bound of the range to find primes in.
|
|
upper_bound: u32,
|
|
/// Whether or not to return the raw output.
|
|
#[arg(short = 'r', long)]
|
|
raw: bool,
|
|
},
|
|
/// Finds the prime factorization of a positive integer.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ### Input
|
|
///
|
|
/// ```bash
|
|
/// lz prealgebra prime-factorization 12
|
|
/// ```
|
|
///
|
|
/// ### Output
|
|
///
|
|
/// ```bash
|
|
/// The prime factorization of 12 is {3: 1, 2: 2}.
|
|
/// ```
|
|
///
|
|
/// ## Raw Output (use `-r` or `--raw`)
|
|
///
|
|
/// ```bash
|
|
/// {3: 1, 2: 2}
|
|
/// ```
|
|
PrimeFactorization {
|
|
/// The positive integer to find the prime factorization of.
|
|
n: u32,
|
|
/// Whether or not to return the raw output.
|
|
#[arg(short = 'r', long)]
|
|
raw: bool,
|
|
},
|
|
/// Determines if a positive integer is composite.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ### Input
|
|
///
|
|
/// ```bash
|
|
/// lz prealgebra is-composite 12
|
|
/// ```
|
|
///
|
|
/// ### Output
|
|
///
|
|
/// ```bash
|
|
/// 12 is composite.
|
|
/// ```
|
|
///
|
|
/// ## Raw Output (use `-r` or `--raw`)
|
|
///
|
|
/// ```bash
|
|
/// true
|
|
/// ```
|
|
IsComposite {
|
|
/// The positive integer to determine if it is composite.
|
|
n: u32,
|
|
/// Whether or not to return the raw output.
|
|
#[arg(short = 'r', long)]
|
|
raw: bool,
|
|
},
|
|
/// Determines if a positive integer is prime.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ### Input
|
|
///
|
|
/// ```bash
|
|
/// lz prealgebra is-prime 12
|
|
/// ```
|
|
///
|
|
/// ### Output
|
|
///
|
|
/// ```bash
|
|
/// 12 is not prime.
|
|
/// ```
|
|
///
|
|
/// ## Raw Output (use `-r` or `--raw`)
|
|
///
|
|
/// ```bash
|
|
/// false
|
|
/// ```
|
|
IsPrime {
|
|
/// The positive integer to determine if it is prime.
|
|
n: u32,
|
|
/// Whether or not to return the raw output.
|
|
#[arg(short = 'r', long)]
|
|
raw: bool,
|
|
},
|
|
/// Determines if a positive integer is a factor of another positive integer.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ### Input
|
|
///
|
|
/// ```bash
|
|
/// lz prealgebra is-factor 3 12
|
|
/// ```
|
|
///
|
|
/// ### Output
|
|
///
|
|
/// ```bash
|
|
/// 3 is a factor of 12.
|
|
/// ```
|
|
///
|
|
/// ## Raw Output (use `-r` or `--raw`)
|
|
///
|
|
/// ```bash
|
|
/// true
|
|
/// ```
|
|
IsFactor {
|
|
/// The positive integer to determine if it is a factor.
|
|
n: u32,
|
|
/// The positive integer to determine if it is a multiple.
|
|
m: u32,
|
|
/// Whether or not to return the raw output.
|
|
#[arg(short = 'r', long)]
|
|
raw: bool,
|
|
},
|
|
/// Determines if a positive integer is a multiple of another positive integer.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ### Input
|
|
///
|
|
/// ```bash
|
|
/// lz prealgebra is-multiple 12 3
|
|
/// ```
|
|
///
|
|
/// ### Output
|
|
///
|
|
/// ```bash
|
|
/// 12 is a multiple of 3.
|
|
/// ```
|
|
///
|
|
/// ## Raw Output (use `-r` or `--raw`)
|
|
///
|
|
/// ```bash
|
|
/// true
|
|
/// ```
|
|
IsMultiple {
|
|
/// The positive integer to determine if it is a multiple.
|
|
n: u32,
|
|
/// The positive integer to determine if it is a factor.
|
|
m: u32,
|
|
/// Whether or not to return the raw output.
|
|
#[arg(short = 'r', long)]
|
|
raw: bool,
|
|
},
|
|
}
|
|
|
|
pub fn match_prealgebra(function: Option<Prealgebra>) {
|
|
use ladderz::prealgebra::*;
|
|
match function {
|
|
Some(Prealgebra::FactorPairs { n, raw }) => match raw {
|
|
true => println!("{:?}", get_factor_pairs(n)),
|
|
false => println!("The factor pairs of {} are {:?}.", n, get_factor_pairs(n)),
|
|
},
|
|
Some(Prealgebra::Factors { n, raw }) => match raw {
|
|
true => println!("{:?}", get_factors(n)),
|
|
false => println!("The factors of {} are {:?}.", n, get_factors(n)),
|
|
},
|
|
Some(Prealgebra::MultiplesInRange {
|
|
n,
|
|
upper_bound,
|
|
raw,
|
|
}) => match raw {
|
|
true => println!("{:?}", get_multiples_in_range(n, upper_bound)),
|
|
false => println!(
|
|
"The multiples of {} in the range [1, {}] are {:?}.",
|
|
n,
|
|
upper_bound,
|
|
get_multiples_in_range(n, upper_bound)
|
|
),
|
|
},
|
|
Some(Prealgebra::PrimesInRange {
|
|
lower_bound,
|
|
upper_bound,
|
|
raw,
|
|
}) => match raw {
|
|
true => println!("{:?}", get_primes_in_range(lower_bound, upper_bound)),
|
|
false => println!(
|
|
"The primes in the range [{}, {}] are {:?}.",
|
|
lower_bound,
|
|
upper_bound,
|
|
get_primes_in_range(lower_bound, upper_bound)
|
|
),
|
|
},
|
|
Some(Prealgebra::PrimeFactorization { n, raw }) => match raw {
|
|
true => println!("{:?}", get_prime_factorization(n)),
|
|
false => println!(
|
|
"The prime factorization of {} is {:?}.",
|
|
n,
|
|
get_prime_factorization(n)
|
|
),
|
|
},
|
|
Some(Prealgebra::IsComposite { n, raw }) => match raw {
|
|
true => println!("{:?}", is_composite(n)),
|
|
false => println!(
|
|
"{} is {}composite.",
|
|
n,
|
|
if is_composite(n) { "" } else { "not " }
|
|
),
|
|
},
|
|
Some(Prealgebra::IsPrime { n, raw }) => match raw {
|
|
true => println!("{:?}", is_prime(n)),
|
|
false => println!("{} is {}prime.", n, if is_prime(n) { "" } else { "not " }),
|
|
},
|
|
Some(Prealgebra::IsFactor { n, m, raw }) => match raw {
|
|
true => println!("{:?}", is_factor(n, m)),
|
|
false => println!(
|
|
"{} is {}a factor of {}.",
|
|
n,
|
|
if is_factor(n, m) { "" } else { "not " },
|
|
m
|
|
),
|
|
},
|
|
Some(Prealgebra::IsMultiple { n, m, raw }) => match raw {
|
|
true => println!("{:?}", is_multiple(n, m)),
|
|
false => println!(
|
|
"{} is {}a multiple of {}.",
|
|
n,
|
|
if is_multiple(n, m) { "" } else { "not " },
|
|
m
|
|
),
|
|
},
|
|
None => {
|
|
println!("Please provide a function to use.");
|
|
}
|
|
}
|
|
}
|